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The existence of the edge states at the interface between two media with different topological properties
is protected by symmetry, which makes such states robust against structural defects or disorder. We show
that, if a system supports more than one topological edge state at the interface, even a weak periodic
deformation may scatter one edge state into another without coupling to bulk modes. This is the Bragg
scattering of the edge modes, which in a topological system is highly selective, with closed bulk and
backward scattering channels, even when conditions for resonant scattering are not satisfied. When such a
system bears nonlinearity, Bragg scattering enables the formation of a new type of soliton—topological
Bragg solitons. We report them in a spin-orbit-coupled (SOC) Bose-Einstein condensate in a homogeneous
honeycomb Zeeman lattice. An interface supporting two edge states is created by two different SOCs, with
the y component of the synthetic magnetic field having opposite directions at different sides of the
interface. The reported Bragg solitons are found to be stable.
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Topological edge states are fundamental for understand-
ing the physics of many phenomena including quantum
[1,2], anomalous [3], and quantum spin [4,5] Hall effects,
topological insulators [6], Majorana fermions [7], just to
mention a few. Introduced in solid state physics, topological
edge states were shown to be a universal wave phenomenon.
In particular, they enable protected edge currents in photonic
crystals as predicted in [8] and observed in [9–11] (see
review [12]), in surface plasmon-polariton systems [13], in
systems of cold atoms in optical lattices [14–16], in spin-
orbit coupled Bose-Einstein condensates (SOC BECs) [17],
and in optoelectronic systems, such as exciton-polariton
condensates [18,19].
Topological edge states are robust against disorder [6],

which distinguishes them from bulk states that can be
manipulated by perturbations [20]. This makes such states
promising for a variety of applications. Meanwhile, when it
is necessary to selectively excite or remove edge states, or
transform them in any other way, this robustness becomes a
drawback. Topological edge states can be coupled by
nonlinearity that gives rise to a rich set of phenomena,
such as modulation instability [19] or envelope soliton
propagating along the edge [17]. However, by enabling
linear coupling one qualitatively enriches the physics of
respective systems. Now nonlinear interactions, requiring
simultaneous energy and momentum conservation laws,
can be made resonant. That leads to a plethora of novel
phenomena, which so far were not considered for edge
states. In particular, linear mode coupling resulting from

periodic modulation of the system, i.e., from Bragg
scattering, in the presence of nonlinearity can lead to the
formation of Bragg solitons [21,22], which are relevant for
many applications [23], and whose properties qualitatively
differ from those of the envelope solitons mentioned above.
In this Letter, we introduce an efficient mechanism of

coupling and conversion of topological edge states based
on Bragg scattering by periodic modulations of an interface
between topologically different media. This mechanism
works when a system supports more than one topological
edge state per interface. We show that even a very weak
periodic perturbation of such an interface may result in
periodic transitions between two edge states moving with
different group velocities. Such a coupling is highly
selective, with closed bulk and backward scattering chan-
nels. Furthermore, we construct Bragg solitons propagating
along the interface and representing a spatially localized
envelope of two coupled edge states.
As a case example, we address an atomic SOC BEC

[24,25], characterized by a spinor order parameter Ψ ¼
ðΨð1Þ;Ψð2ÞÞT (T stands for the transpose). The condensate is
placed in a honeycomb lattice, which can be created
experimentally by applying at least three laser beams
[26,27]. Almost arbitrary 2D field distributions, and thus
optical potentials, can be produced by the interference of
quasinondiffracting laser beams [28]. The lattice is charac-
terized by inverted potential profiles for the spinor compo-
nents and can be created by periodically varying Zeeman
splitting (see [29] for a possibility of experimental
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realization). Below such potential is termed a Zeeman lattice
(ZL). The interface supporting edge states is created by two
different spin-orbit couplings (SOCs). Although we focus on
SO BECs, our findings can be extended to any system
supporting several topological edge states per interface,
including gyromagnetic photonic crystals [9], polariton
microcavities [18], and photonic waveguide arrays [30].
The ZL is simulated by the matrix potential σzRðrÞ, where

RðrÞ is a periodic function and ðσx; σy; σzÞ ¼ σ are the Pauli
matrices. The respective linear part of the Hamiltonian is
Hlatt ¼ p2=2þ σzRðrÞ, where p ¼ ð−i∂x;−i∂yÞ is the
momentum operator (in the units, where ℏ ¼ m ¼ 1). We
consider RðrÞ ≤ 0; i.e., the ZL acts as an array of potential
wells and a barrier for the components Ψð1Þ and Ψð2Þ,
respectively. This results in the dominance of Ψð1Þ compo-
nent in states with negative energies. In a sufficiently deep
ZL, when the coupling to the Ψð2Þ component is a weak
perturbation for the Ψð1Þ component, the properties of the
lowest gap are determined by the topology of the Dirac
points of the conventional honeycomb lattice [31] (for
previous studies of BECs in discrete honeycomb lattices
see also [27,32]). Thus, when a ZL has a boundary with
uniform media, the application of SOC enables topological
edge states [17].
If a ZL is infinite, a space-dependent SOC by itself can

create an interface supporting topological states. Indeed,
assume that Rashba SOC [33], HR ¼ βðpyσx − pxσyÞ, and
Dresselhaus SOC [34], HD ¼ −βðpxσy þ pyσxÞ, of equal
strengths β, are induced in the left (x < 0) and in the right
ðx > 0Þ half-spaces, respectively. The SOC Hamiltonian
can be written as HSOC ¼ −β½pxσy þ χðxÞpyσx�, where
χðxÞ≡ signðxÞ [note that χðxÞ here can be replaced by
any smooth function, whose transition region between −1
and þ1 is less than the lattice period in the x direction].
The resulting linear Hamiltonian acquires the form
H0 ¼ Hlatt þHSOC. The Rashba SOC acting in the bulk
ZL (the Hamiltonian Hlatt þHR) breaks time-reversal
symmetry and opens the topological gap between the
two lowest bands characterized by the Chern numbers
C1 ¼ −1 and C2 ¼ 1. In contrast, Dresselhaus SOC acting
in the bulk ZL (the HamiltonianHlatt þHD) results inC1 ¼
1 and C2 ¼ −1 Chern numbers of the two lowest bands.
Thus, a SOC interface created at x ¼ 0 supports two edge
states, since the difference of the gap Chern numbers [2] of
the lattices at x < 0 and x > 0 is 2. This is shown in Fig. 1
(a) for a honeycomb ZL illustrated in Fig. 1(b).
The interface breaks the translational symmetry along

the x axis, but the system remains L periodic along the y
axis, i.e., Rðrþ LĵÞ ¼ RðrÞ (for the hexagonal lattice
L ¼ ffiffiffi

3
p

a, where a is the distance between neighboring

sites). Consider two orthonormal edge states, ψj ¼ ðψ ð1Þ
j ;

ψ ð2Þ
j ÞT , j ¼ 1, 2, corresponding to an energy ε0, i.e.,

H0ψ1;2 ¼ ε0ψ1;2, but different Bloch momenta k1;2 in

the y direction (like the states shown in Fig. 1). Because
of the Bloch theorem ψjðrÞ¼eikjyujðx;yÞ, where
ujðx;yÞ¼ujðx;yþLÞ. One has ½Hlatt;Px;y� ¼ 0, where
Px and Py are the operators performing inversions
x → −x and y → −y, respectively. One also obtains
½H0; σzPx� ¼ ½H0;PyK� ¼ 0, where K is the complex
conjugation. The symmetry PyK implies that ujðx; yÞ ¼
e−iφju�jðx;−yÞ, where φj is an arbitrary constant phase.
Since σzPxuj ¼ �uj, the components of a spinor uj have
opposite parities with respect to x.
Further, we take into account that the modes 1 and 2

belong to two neighboring branches of the dispersion
relation (i.e., for any given k in the Brillouin zone these
are subsequent energy levels). Since the symmetry of a
mode holds along the dispersion curve and there are only
two noncrossing edge states in the topological gap, one
conjectures that the σzPx symmetries of the states ψ1;2ðrÞ
are different. In other words, the same spinor components
of the edge states 1 and 2, have different parity in x. These
considerations are consistent with the symmetry of numeri-
cally calculated modes, shown in Figs. 1(c)–1(f), for which
Pxψ

ðαÞ
j ¼ ð−1Þjþαþ1ψ ðαÞ

j . This also ensures mutual ortho-
gonality of the edge states allowing us to choose them to
satisfy (j, l ¼ 1, 2): hψjjψ li ¼ δjl, where we define

hψjjOjψ li ¼
R∞
−∞ dx

R
L
0 dyψ†

jOψ l for an observable O.
These properties have implications for the averaged values
of the pseudospin sj ¼ hψjjσjψji ¼ ðsx;j; sy;j; sz;jÞ: for the
jth edge state one computes sj ¼ ð0; 0; sz;jÞ. For the states
shown in Figs. 1(c)–1(f) we have sz;1 ≈ 0.7021 and
sz;2 ≈ 0.8012; i.e., both states are mixed ones: jsz;jj < 1.

FIG. 1. (a) Two lowest bands in the spectrum of the ZL with
RðrÞ ¼ −ρ

P
m;n exp ½−ðr − rmnÞ2=d2� shown in (b) for one

component. The amplitude of the lattice is ρ ¼ 8, the character-
istic width of the potential maxima and minima centered at the
nodes rmn ¼ ðxm; ynÞ of the honeycomb grid is d ¼ 0.5, the
distance between neighboring sites is a ¼ 1.4. The dashed line in
(b) indicates the interface between domains with Rashba SOC
(left) and Dresselhaus SOC (right) with equal amplitudes
β ¼ 1.5. Moduli of the components of the edge state 1 at k1 ¼
0.375K (c),(d) and of the edge state 2 at k2 ¼ 0.575K (e),(f),
where K ¼ 2π=

ffiffiffi
3

p
a. Both states, marked by the blue dots in (a),

have the energy ε0 ≈ −3.376.

PHYSICAL REVIEW LETTERS 123, 254103 (2019)

254103-2



A weak perturbation UdðrÞ, which is periodic along the
interface can resonantly couple the edge states, by means of
Bragg scattering. This occurs if the quasimomentum and
energy conservation laws, alias matching conditions for the
exact Bragg resonance, are satisfied simultaneously. For the
states with equal energies ε0, the quasimomentum con-
servation is achieved if the period of the perturbation l is
chosen as l ¼ 2π=κ ≫ L, where κ ¼ k02 − k01 ≪ K is the
lattice constant of the perturbation [we consider k01 < k02,
see Fig. 1(a), and use the index “0” for a pair of Bloch
vectors exactly satisfying the resonance condition]. To
determine the x dependence of the UdðrÞ, we recall that
the edge states from different branches have opposite
parities in the x direction. Hence, the perturbation must
be an odd function of x, which is centered at the interface
and has sufficiently large width ld to ensure significant
overlapping with edge states (thus the symmetry of the
states determines the x dependence of the perturbation
ensuring the most efficient coupling). Below we use
UdðrÞ ¼ δχðxÞRðrÞ cosðκyÞ, for jxj < ld=2 and UdðrÞ≡
0 for jxj > ld=2, where δ ≪ 1 is the modulation amplitude.
Now the linear Hamiltonian is given by H ¼ H0þ

σzUdðrÞ, and taking into account two-body interactions
the Gross-Pitaevskii equation for the spinor Ψ takes the
form

i∂tΨ ¼ HΨþ gðΨ†ΨÞΨ; ð1Þ

where g > 0 (g < 0) for the BEC with positive (negative)
scattering length. We are interested in the evolution of a
wave packet, prepared at t ¼ 0 as a superposition of two
edge states ψ1;2, Ψðr; 0Þ ¼ a01ψ1ðrÞ þ a02ψ2ðrÞ, where
a0j are complex amplitudes. First, we relax the requirement
of the exact matching conditions and consider edge states
with the Bloch momenta kj ¼ k0j þ ð−1ÞjΔk=2, where
jΔkj ≪ κ is a deviation from the exact resonance. The
respective energies are given by ε1;2 ¼ ε0 ∓ Δε=2, where
for a small Δk one approaches Δε ≈ ðv1 þ v2ÞΔk=2, with
jΔεðkÞj ≪ ε0 and vj ¼ ∂εjðk0jÞ=∂k0j being the group veloc-
ity of the jth state in the exact Bragg resonance. Since the
resonant interaction of the edge states dominates over their
coupling to bulk modes, at t > 0 the wave function is given
by Ψðr; tÞ ¼ a1ðt; yÞψ1e−iε1t þ a2ðt; yÞψ2e−iε2t, where the
evolution of amplitudes aj is described by the two-mode
model derived from (1) [35]:

i∂taj þ ivj∂yaj − ceið−1Þj−1ðΔky−ΔεtÞa3−j
− gðχjjajj2 þ χ̃ja3−jj2Þaj ¼ 0: ð2Þ

Here, j ¼ 1; 2, c ¼ δhψ1jχσzRjψ2i=2 is the coupling con-
stant (it is real), and the nonlinear coefficients χj ¼
hψ†

jψjjψ†
jψji and χ̃ ¼ hψ†

1ψ1jψ†
2ψ2i þ hψ†

2ψ1jψ†
2ψ1i are

positive constants.

First, we describe linear Bragg scattering of the edge
states at g ¼ 0. Normalizing the initial amplitudes as
ja01j2 þ ja02j2 ¼ 1, and considering the exact Bragg res-
onance, for y-independent amplitudes a1;2 one obtains
a1 ¼ cosðjcjtþ ϑ0Þ, a2¼e−iðπ=2þargcÞ sinðjcjtþϑ0Þ, where
ϑ0 is a real constant. In Fig. 2(a) we compare the linear
densities of the edge states νj ¼ jajðtÞj2 obtained from this
solution for ϑ0 ¼ 0 (solid lines) and from the direct
simulations of Eq. (1) (dots) where the amplitudes were
computed as ajðtÞ ¼

R
A ψ

†
jðrÞΨðr; tÞdr with A being the

total area of the lattice. As predicted, even weak periodic
grating leads to practically complete transition between
two edge states. The process is periodic: after atoms
transfer into state 2 at t ¼ π=2jcj (where ν2 ≈ 1), the
reverse transfer starts, so that the initial state is recovered
at t ¼ π=jcj.
One period of evolution of the initial edge state

prepared at k1 ¼ 0.375K, i.e., of Ψðr; 0Þ ¼ ψ1ðrÞ shown
in Figs. 1(c) and 1(d), at the exact Bragg resonance is
presented in Fig. 3 in the real and in momentum spaces (due
to fast decay of the edge estate along the x direction we
used periodic boundary conditions also in x). The evolution
of the internal structure of the wave due to conversion
between the states is visible from the comparison of real-
space distributions at half-period (t ¼ 640) and at one
period (t ¼ 1280). In the momentum space both spinor
components of the state 1 at t ¼ 0 and at t ¼ 1280 (after
one period) are localized mainly near two symmetric K0
points of the Brillouin zone [Fig. 3(f) shows the dominant
first component]. The interference of both edge states is
illustrated at a quarter-period, t ¼ 320, in Fig. 3(a) in the
real space and Fig. 3(d) in the momentum space. We
observe spots of the spectral density in all K and K0 points.
After a half-period the Fourier transform of Ψð1Þ (denoted
by φð1Þ) is localized in the vicinity of K points [Fig. 3(e)],
with the upper K point being more populated than the
other two.

FIG. 2. Linear evolution of ν1;2 in the exact Bragg resonance
κ2¼ κ1þ0.2K (a) and near Bragg resonance κ2 ¼ κ1 þ 0.225K,
i.e., Δk ¼ 0.025K corresponding to Δε ¼ 0.0077 (b). The dots
and solid lines show, respectively, the results of direct solution
of Eq. (1) and predictions of the coupled-mode theory. In both
cases the modulation depth is δ ¼ 0.004, while at t ¼ 0, ν1 ¼ 1,
and ν2 ¼ 0.
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The evolution of the densities ν1;2 for a near-resonant
case Δk ≠ 0, Δε ≠ 0 is illustrated in Fig. 2(b). We observe
a weakening of the conversion and increase of the fre-
quency of oscillations with an increase of the mismatchΔk.
This can be understood by considering a plane-wave
solution of Eq. (2): ajðtÞ ¼ bjeiωt−ið−1Þ

jðΔky−ΔεtÞ=2, for
which two frequencies are obtained: ω�¼Δkðv2−v1Þ=4�
f½ðv1þv2ÞΔk=2−Δε�2=4þc2g1=2. Thus, the period of the
energy exchange between the states is T ¼ 2π=ðωþ − ω−Þ.
The energy difference Δε and coupling coefficient c
depend on the mismatch Δk [see Fig. 4(a)]. The depend-
ence of the maximal (over the whole time interval) density
of the second edge state on momentum mismatch has a
resonance character, as shown in Fig. 4(b). The exact
resonance corresponding to complete transition between
the edge states is achieved at k2 − k1 ≈ 0.2K and Δε ¼ 0.
In the nonlinear case Eq. (2) admits a Bragg-soliton

solution. We write it for g < 0 and c > 0, and for the exact
Bragg resonance Δk ¼ Δε ¼ 0:

ða1; a2Þ ¼
ffiffiffiffiffi
2c

p
τ sin σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgjðτ8χ2 þ 2τ4χ̃ þ χ1Þ
p eiφþiη

× ½sechðξþ iσ=2Þ; τ2sechðξ − iσ=2Þ�; ð3Þ

where ζj ¼ y − vjt,

ξ ¼ cðτ4ζ2 þ ζ1Þ sin σ
τ2ðv2 − v1Þ

; φ ¼ cðτ4ζ2 − ζ1Þ cos σ
τ2ðv2 − v1Þ

;

η ¼ 2ðτ8χ2 − χ1Þ
χ1 þ 2χ̃τ4 þ χ2τ

8
arctan

�
1 − cos σ
sin σ

tanh ξ

�
;

and σ ∈ ð0; π=2Þ and τ ∈ ð−1; 1Þ remain free para-
meters. Such solitons move with the velocity of the

envelope, i.e., vsol ¼ ðτ4v2 þ v1Þ=ð1þ τ4Þ (Bragg solitons
for nontopological nonlinear optics were first found in
[21,22]). Notice that azimuthal, θ ¼ 2σ, and polar,
ϕ ¼ arccos τ, angles map the soliton to the unit Bloch
sphere encoding information in the soliton in the same way
as in a qubit.
Although Eq. (3) describes the 1D field distribution

along the interface, the Bragg solitons reported here are 2D
objects localized along and across the interface by different
physical mechanisms. Therefore, now we turn to the results
of direct numerical simulations of Eq. (1). Figure 5 shows
the propagation of a topological Bragg soliton [panels
(d)–(f)] in a condensate with a negative scattering length
in comparison with dispersive dynamics of the same
initial wave packet in a condensate without interatomic

FIG. 3. Resonant scattering of the initial edge state prepared at
k1 ¼ 0.375K for δ ¼ 0.004. Real-space jΨð1Þj distribution within
x; y ∈ ½−16L; 16L� window (top row), and corresponding mo-
mentum-space jφð1Þj distribution within kx, ky∈ ½−1.5K;1.5K�
window (bottom row) are shown at approximately a quarter-period
(t ¼ 320), half-period (t ¼ 640), and one period (t ¼ 1280).

FIG. 4. (a) Energy mismatch Δε, coupling constant c, and
(b) maximal density νmax

2 versus k2 − k1 at k1 ¼ 0.375K and
δ ¼ 0.004. Dots in (a) are guides for the eye. Dots in (b) show the
results of direct simulations of Eq. (1) while the solid line shows
predictions of the coupled-mode theory. The exact Bragg
resonance occurs at κ ¼ 0.2K.

FIG. 5. jΨð1Þj distributions of a wave packet at g ¼ 0 (a)–(c)
and a topological Bragg soliton at g ¼ −1 (d)–(f), obtained by the
direct simulation of (1) are shown at instants within the
x ∈ ½−16L; 16L�, y ∈ ½−60L; 60L� window. Initial distributions
were constructed using (3) with τ ¼ 1, σ ¼ 0.44π. The modu-
lation amplitude δ ¼ 0.008 corresponds to c ¼ 0.00484. The
coupled modes have group velocities v1 ¼ 0.2543 and
v2 ¼ 0.1215. We mention high accuracy of the definition of
the soliton velocity, which is 0.1828 in the shown numerical
results, as compared to 0.1879 predicted by (3). The nonlinear
coefficients are χ1 ¼ 0.0739, χ2 ¼ 0.1515, and χ̃ ¼ 0.1965.
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interactions [panels (a)–(c)].Weobserve the robustness of the
Bragg soliton, which is topologically protected from the
energy losses into other modes of the system, that also
illustrates a high accuracy of formula (3) for the soliton shape.
The soliton is confined at the interface due to its topological
nature; hence it is quasi-1D and it is also protected against
collapse, although the system is 2D and the interactions are
attractive. Theweak broadening of the soliton visible at large
times t ∼ 700 is attributed to higher-order dispersionwhich is
not accounted for by the model (2).
Summarizing, weak periodic perturbation at the interface

between two topologically different media with two or more
edge states enables resonant transitions between them.
This allows the manipulation of edge states, their selective
excitation, and control of their propagation velocity. Because
of the topological nature of the system, Bragg scattering
channels are limited to the edge-state subspace, remaining
immune to scattering into bulk modes. When the system
bears nonlinearity, it supports the propagation of topological
Bragg solitons inheriting topological protection from the
modes on which they are constructed. Robustness, dynami-
cal nature, and parametrization make Bragg solitons good
candidates for the implementation of qubits. Our results are
not limited to atomic states described here; they can be
observed in any system supporting more than one topologi-
cal state per interface. Furthermore, they pave a way to the
investigation of a plethora of multiwave processes involving
edge states, three-wave processes and four-wave mixing
being among them. They also indicate the possibilities of
other coupling mechanisms such as, for example, Bragg
scattering on phonons.

Y. V. K. acknowledges the funding of this study by
RFBR and DFG according to research Project No. 18-
502-12080. V. V. K. was supported of the FCT (Portugal)
under Grant No. UID/FIS/00618/2019. W. Z. and F. Y.
acknowledge the support of NSFC (No. 91950120,
No. 11690033, and No. 61475101) and of the Natural
Science Foundation of Shanghai (No. 19ZR1424400).

*Corresponding author.
fangweiye@sjtu.edu.cn

[1] B. I. Halperin, Quantized Hall conductance, current-carrying
edge states, and the existence of extended states in a two-
dimensional disordered potential, Phys. Rev. B 25, 2185
(1982).

[2] Y. Hatsugai, Chern Number and Edge States in the Integer
Quantum Hall Effect, Phys. Rev. Lett. 71, 3697 (1993).

[3] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the Parity
Anomaly, Phys. Rev. Lett. 61, 2015 (1988); Z. Qiao, S. A.
Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, and Q.
Niu, Quantum anomalous Hall effect in graphene from
Rashba and exchange effects, Phys. Rev. B 82, 161414
(2010); C.-Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C.
Zhang, M. H. Guo, K. Li, Y. Ou, and P. Wei, Experimental

observation of the quantum anomalous Hall effect in a
magnetic topological insulator, Science 340, 167 (2013).

[4] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005); L. Sheng,
D. N. Sheng, C. S. Ting, and F. D. M. Haldane, Nondissi-
pative Spin Hall Effect via Quantized Edge Transport, Phys.
Rev. Lett. 95, 136602 (2005).

[5] C. L. Kane and E. J. Mele, Z2 Topological Order and the
QuantumSpinHall Effect, Phys.Rev.Lett.95, 146802 (2005).

[6] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi
and S.-C. Zhang, Topological insulators and superconduc-
tors, Rev. Mod. Phys. 83, 1057 (2011).

[7] A. Y. Kitaev, Unpaired Majorana fermions in quantum
wires, Phys. Usp. 44, 131 (2001).

[8] F. D. M. Haldane and S. Raghu, Possible Realization of
Directional Optical Waveguides in Photonic Crystals with
Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100,
013904 (2008); S. Raghu and F. D. M. Haldane, Analogs of
quantum-Hall-effect edge states in photonic crystals, Phys.
Rev. A 78, 033834 (2008).

[9] S. A. Skirlo, L. Lu, and M. Soljačić, Multimode One-Way
Waveguides of Large Chern Numbers, Phys. Rev. Lett. 113,
113904 (2014).

[10] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
Observation of unidirectional backscattering-immune topo-
logical electromagnetic states, Nature (London) 461, 772
(2009).

[11] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Photonic topological
insulators, Nat. Mater. 12, 233 (2013); F. Gao, H. R.
Xue, Z. J. Yang, K. F. Lai, Y. Yu, X. Lin, Y. D. Chong,
G. Shvets, and B. L. Zhang, Topologically protected re-
fraction of robust kink states in valley photonic crystals, Nat.
Phys. 14, 140 (2018).

[12] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
photonics, Nat. Photonics, 8, 821 (2014); A. B. Khanikaev
and G. Shvets, Two-dimensional topological photonics, Nat.
Photonics 11, 763 (2017).

[13] K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin Hall
effect of light, Science 348, 1448 (2015).

[14] N. Goldmana, J. Dalibard, A. Dauphina, F. Gerbierb, M.
Lewensteine, P. Zoller, and I. B. Spielman, Direct imaging
of topological edge states in cold-atom systems, Proc. Natl.
Acad. Sci. U.S.A. 110, 6736 (2013); J. Jüemann, A. Piga,
S.-J. Ran, M. Lewenstein, M. Rizzi, and A. Bermudez,
Exploring Interacting Topological Insulators with Ultracold
Atoms: The Synthetic Creutz-Hubbard Model, Phys. Rev. X
7, 031057 (2017).

[15] B. Galilo, D. K. K. Lee, and R. Barnett, Topological Edge-
State Manifestation of Interacting 2D Condensed Boson-
Lattice Systems in a Harmonic Trap, Phys. Rev. Lett. 119,
203204 (2017).

[16] H. Zhai, M. Rechtsman, Y.-M. Lu, and K. Yang, Focus on
topological physics: From condensed matter to cold atoms
and optics, New J. Phys. 18, 080201 (2016).

[17] C. Li, F. Ye, X. Chen, Y. V. Kartashov, L. Torner, and V. V.
Konotop, Topological edge states in Rashba-Dresselhaus
spin-orbit-coupled atoms in a Zeeman lattice, Phys. Rev. A
98, 061601(R) (2018).

PHYSICAL REVIEW LETTERS 123, 254103 (2019)

254103-5

https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.82.161414
https://doi.org/10.1103/PhysRevB.82.161414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.136602
https://doi.org/10.1103/PhysRevLett.95.136602
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphys4304
https://doi.org/10.1038/nphys4304
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/s41566-017-0048-5
https://doi.org/10.1038/s41566-017-0048-5
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1073/pnas.1300170110
https://doi.org/10.1073/pnas.1300170110
https://doi.org/10.1103/PhysRevX.7.031057
https://doi.org/10.1103/PhysRevX.7.031057
https://doi.org/10.1103/PhysRevLett.119.203204
https://doi.org/10.1103/PhysRevLett.119.203204
https://doi.org/10.1088/1367-2630/18/8/080201
https://doi.org/10.1103/PhysRevA.98.061601
https://doi.org/10.1103/PhysRevA.98.061601


[18] A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polar-
iton Z Topological Insulator, Phys. Rev. Lett. 114, 116401
(2015); T. Karzig, C.-E. Bardyn, N. H. Lindner, and G.
Refael, Topological Polaritons, Phys. Rev. X 5, 031001
(2015); Y. Zhang, Y. V. Kartashov, Y. Zhang, L. Torner, and
D. V. Skryabin, Resonant edge-state switching in polariton
topological insulators, Laser Photonics Rev. 12, 1700348
(2018); S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler,
R. Ge, M. A. Bandres, M. Emmerling, L. Worschech,
T. C. H. Liew, M. Segev, C. Schneider, and S. Hofling,
Exciton-polariton topological insulator, Nature (London)
562, 552 (2018).

[19] Y. V. Kartashov and D. V. Skryabin, Modulational instabil-
ity and solitary waves in polariton topological insulators,
Optica 3, 1228 (2016).

[20] J. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. C.
Top, A. O. Jamison, and W. Ketterle, A stripe phase with
supersolid properties in spin-orbit-coupled Bose Einstein
condensates, Nature (London) 543, 91 (2017).

[21] D. N. Christodoulides and R. I. Joseph, Slow Bragg Solitons
in Nonlinear Periodic Structures, Phys. Rev. Lett. 62, 1746
(1989).

[22] A. B. Aceves and S. Wabnitz, Self-induced transparency
solitons in nonlinear refractive periodic media, Phys. Lett.
141A, 37 (1989).

[23] G. P. Agrawal, Applications of Nonlinear Fiber Optics
(Academic Press, San Diego, 2008).
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